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1. Executive Summary 

Urban and peri-urban trees in major cities provide a gateway for exotic pests and diseases (hereafter 
“pests”) to establish and spread into new countries. Consequently, they can be used as sentinels for 
early detection of exotic pests that could threaten commercial, environmental and amenity forests. 
Post-border biosecurity surveillance for the early detection of exotic forest pests relies on monitoring 
of host trees — or sentinel trees — around high-risk sites, such as airports and seaports. In the event 
of an exotic pest incursion, surveillance of all known hosts in a defined area is necessary to 
determine whether eradication is feasible, and if so, was it subsequently successful. However, in 
Australia, there are few publicly available spatial databases of urban street and park trees, so locating 
and mapping host trees is primarily conducted via ground surveys. This is time-consuming and 
resource-intensive, and generally does not provide complete coverage. Advances in remote sensing 
technologies and machine learning provide an opportunity for semi-automation of tree species 

mapping to assist in biosecurity surveillance. In this study, we obtained high resolution (12 cm), 10-
band, multispectral imagery using the ArborCamTM system mounted to a fixed-wing aircraft over 
Bayside Council in Sydney, Australia, which encompasses Port Botany and Sydney International 
Airport — two major entry pathways for invasion of exotic pests. We mapped 630 Pinus trees and 
439 Platanus trees on-foot, validating their exact location on the airborne imagery using an in-field 
mapping app. These genera were chosen as they are hosts for several high priority pests for 
Australia. Using a machine learning, convolutional neural network workflow, we were able to classify 
the two target genera with a high level of accuracy in a complex urban landscape. Overall accuracy 
was 92.1% for Pinus and 95.2% for Platanus, precision (user’s accuracy) ranged from 61.3% to 77.6%, 
sensitivity (producer’s accuracy) ranged from 92.7% to 95.2%, and F1-score ranged from 74.6% to 
84.4%. Our study validates the potential for using ArborCam imagery and machine learning to assist 
in tree biosecurity surveillance. We encourage biosecurity agencies to consider greater use of this 
technology. 

2. Introduction 

Trees form a major component of urban green spaces, providing multiple benefits, such as improving 
physical and mental health, filtering pollutants, regulating water flow and improving water quality, 
increasing urban biodiversity, and mitigating the urban heat-island effect (Alvey 2006; Novak et al. 
2006; Armson et al. 2012; FAO 2016; Donavan 2017). Across the world, there has been a concerted 
effort to increase tree canopy cover in urban areas to facilitate these benefits and to mitigate against 
climate change (e.g., California Natural Resources Agency 2021; City of Sydney 2021; Greater London 
Authority 2021). The bulk of international trade, travel and mail arrives at seaports and airports in 
major cities. Global trade is recognised as a major mechanism for exotic species invasions (Haack 
2006; Liebhold et al. 2006; Hulme 2009), with entry of invasive alien species predominantly through 
urban areas (Hulme 2009; Colunga-Garcia et al. 2010; Liebhold et al. 2016; Paap et al. 2017). Urban 
and peri-urban trees provide a resource and a habitat for invasive forest pests, and act as 
bridgeheads for the establishment and spread of exotic pests into new countries (Lombaert et al. 
2010; Paap et al. 2017). There are numerous examples of exotic forest pests arriving and establishing 
in urban areas, including Anoplophora glabripennis (Motschulsky) (Dodds and Orwig 2011) and 
Agrilus planipennis Fairmaire (Siegert et al. 2014) in the United States, Phytophthora ramorum 
Werres, De Cock & Man in't Veld (Brasier et al. 2004) and Hymenoscyphus fraxineus (T. Kowalski) 
Baral, Queloz & Hosoya (Mitchell et al. 2014) in the United Kingdom, Ophiostoma novo-ulmi Brasier 
in New Zealand (Ganely and Bulman 2016), Ceratocystis platani (Walter) Engelbrecht & T.C. Harr. in 
Europe (Engelbrecht et al. 2014) and Euwallacea fornicatus Hopkins in South Africa (Paap et al. 
2018). 
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Biosecurity agencies can use this convergence of trade pathways and urban areas to their advantage. 
Urban and peri-urban trees can act as sentinels for early detection of exotic pests (Wylie et al. 2008; 
Smith et al. 2010; Hulbert et al. 2017; Paap et al 2017; Mansfield et al. 2019; Wondafrash et al. 
2021). Sentinel trees located around high-risk sites for arrival of exotic pests — e.g., proximity to 
trade and tourism entry points — can be monitored for symptoms or presence of pests to assist in 
early detection of exotic pests. It has long been recognised that conducting surveillance in urban and 
peri-urban forests near likely pest-entry points — high-risk site surveillance — is an efficient and 
effective means of early detection of exotic pests (Carter 1989; Wylie et al. 2008; Magarey et al. 
2009). 

Post-border surveillance for early detection of forest pests in Australia includes establishment of 
insect traps and host-tree surveillance around high-risk sites (e.g., major ports) as part of specific 
surveillance (Wylie et al. 2008; Bashford 2012), and stakeholder engagement (e.g., training of 
arborists and local council staff) as part of general surveillance (Carnegie et al. 2022; Department of 
Primary Industries 2022). Host-tree surveillance (sentinel tree surveillance) involves locating and 
mapping tree species that are key hosts of identified exotic forest pests, then visually assessing these 
for signs and symptoms of pest attack or pathogen infection. In the event of a detection of an exotic 
pest, host-tree surveillance in a defined area is a key component of delineating the distribution of the 
pest to ascertain whether eradication is feasible. If eradication is deemed feasible, an exhaustive 
detection of hosts is needed (Liebhold and Kean 2019; Pearse et al. 2021) for destruction of infected 
hosts (host-removal) or pest/pathogen control, then continued monitoring of hosts to ensure 
eradication success. 

There are, however, very few publicly available spatial databases of urban street and park trees 
globally (Bennett 2020). In Australia, for example, most State-capital cities (i.e., Sydney, Brisbane, 
Perth, Hobart and Canberra) have publicly available street tree data for only one or two local 
government areas, with Melbourne the only city whose street-tree data covers most of its 
metropolitan area (Smith et al. 2010; Bennett 2020; Supplementary Figure 1). Additionally, many 
local government areas in Australia do not have georeferenced data on the locations or species 
composition of trees in public or private land within their administrative area. As such, locating and 
mapping host trees for post-border biosecurity surveillance, or during an emergency response to an 
exotic pest invasion, is conducted via ground surveys; generally using publicly available imagery to 
identify urban green spaces with many trees and then conducting vehicle and foot patrols to locate, 
identify and map individual tree species. This is time-consuming, labour-intensive, generally covers a 
limited spatial extent and provides incomplete detection of trees within an area. During the 
Marchellina hellenica (Gennadius) response in Victoria more than 85,000 pine trees were mapped, 
most via ground patrols (D. Smith, pers. comm.). There is an urgent need for a more efficient means 
of identifying and mapping tree species for biosecurity surveillance in urban landscapes. 

Advances in remote sensing technologies has seen an exponential increase in studies on tree species 
classification (Fassnacht et al. 2016) and mapping of urban green spaces (Shahtahmassebi et al. 
2021) using satellites, aircraft, and uncrewed aerial vehicles (UAVs). Optical sensors evaluated have 
mostly focused on high spatial resolution satellites (e.g., QuickBird, WorldView), and red-green-blue 
(RGB) cameras or multispectral and hyperspectral systems for aircraft and UAVs (Li et al. 2015; Odini 
et al. 2016; Jombo et al. 2020; Onishi and Ise 2021). The fusion of hyperspectral imagery with LiDAR 
(light detection and ranging) has also proven to be very successful at accurately delineating and 
classifying individual tree species in urban landscapes (Dian et al. 2016; Fassnacht et al. 2016; Liu et 
al. 2017; Wang et al. 2019; Shahtahmassebi et al. 2021). Important data that when combined have 
enabled accurate tree species classification include spectral data (e.g., spectra correlating to 
chlorophyll content), textural or structural data (e.g., leaf and branch density, angular distribution, 
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clumping), along with an understanding of individual tree species phenology (e.g., flowering time, 
leaf senescence) (Fassnacht et al. 2016; Lui et al. 2017; Pearse et al. 2021). 

Recently, significant advances have been made in the analysis of high spatial resolution imagery 
through the application of artificial intelligence and machine learning, in particular the application of 
deep learning techniques such as the use of convolutional neural networks (CNNs) which arose 
within the research field of computer vision (Onishi and Ise 2021). CNNs are a suite of deep learning 
algorithms that are specifically designed to analyse spatial patterns and provides an end-to-end 
learning approach that provide segmentation and classification (Hu et al. 2015; Liu et al. 2018). 
Recently CNNs have been very successfully applied to detect tree crowns using high spatial resolution 
imagery to locate and classify tree species (Lobo Torres et al. 2020; Schiefer et al. 2020; Braga et al. 
2021; Lumnitz et al. 2021; Martins et al. 2021; Onishi and Ise 2021; Pearse et al. 2021). 

3. Aim 

In this study, we demonstrated the capacity of high spatial resolution, multispectral airborne imagery 
and the use of deep learning CNNs to locate and segment individual tree crowns and classify them as 
one of two tree genera within an heterogenous urban environment in the Australian context. Our 
intent was to illustrate the effectiveness of the application of such methodology to increase 
efficiencies, spatial areas covered and accuracy in locating and mapping of tree hosts of exotic pests 
for use in biosecurity surveillance. 

4. Methods 

4.1. Study area 

The study area was the local government area of Bayside Council (~5,700 ha) in Sydney, New South 
Wales, Australia (33° 56’50” S, 151° 11’ 55” E) (Fig. 1). This area was selected because it falls within 
one of the main high-risk site surveillance zones of the NSW Department of Primary Industries’ 
Forest Biosecurity Surveillance Program (Department of Primary Industries 2022). This zone is 
centred around the Port Botany shipping terminal and encompasses Sydney International Airport and 
is recognised as a high risk for the entry and establishment of invasive forest pests, with forest 
biosecurity surveillance being conducted since 2014. High-risk site surveillance here includes insect 
trapping and surveillance of sentinel trees (Carnegie et al. 2018; Carnegie et al. 2022), primarily 
focusing on Pinus and Platanus. These two genera were chosen as targets for sentinel-tree 
surveillance as they are hosts for high priority tree pests for Australia, including 20 invasive species of 
biosecurity concern for multiple plant industries as well as environmental and amenity trees 
(Supplementary Table 1). Both genera are exotic to Australia, with Pinus spp. being evergreen 
conifers and Platanus spp. deciduous hardwoods. There is a broad heterogenous mix of other exotic 
and native tree genera within Bayside Council. 
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Figure 1. Study area: Bayside Council, Sydney, Australia. Scale = 5 km. 

4.2. Aerial image acquisition and processing 

Imagery was acquired using the ArborCam™1 multispectral camera from a fixed-wing aircraft at 3,650 
m above ground level in cloudless conditions between the hours of 14:15 and 16:30 on 10th 
November 2020. The timing of image capture was in late spring when Platanus trees in Sydney have 
full leaf canopies; by late summer to early autumn, leaves of Platanus begin to discolour. Imagery 
was acquired with sufficient overlap to produce a detailed Digital Surface Model (DSM) of the area to 
enable calculation of vegetation height. The ground sample distance (GSD) of the acquired imagery 
ranged from 12 cm (RGB sensor) to 36 cm (multispectral sensors). The ArborCam multispectral 

camera has seven narrow band ( +/- 10 nm full width half maximum) sensors centred at the 
following wavelengths: 450 nm (blue), 530 nm (green), 570 nm (orange), 655 nm (red 1), 680 nm (red 
2), 720 nm (red-edge), and 780 nm (near infrared). The high-resolution airborne imagery datasets 
were geometrically corrected using post-processing kinematic Global navigation satellite system 
(horizontal) and the Geoscience Australia 5 m LiDAR-derived Digital Terrain Model (DTM)2 (vertical) 
and orthorectified to the DSM generated from the acquired imagery. Bands across the visible (VIS) 
and near infrared (NIR) were used to detect all living vegetation in sun and shadow. Vegetation not 
photosynthesizing at the time of acquisition was excluded, including dead wood in tree crowns, 
deciduous trees without leaves, and dead grass. 
 
A base layer true colour orthomosaic was generated to enable accurate field collection of tree data 
(Fig. 2a). Vegetation was stratified using the Feature Height Model (FHM = DSM - DTM) into selected 
height strata (0–3 m, 3–6 m, 6–10 m, 10–15 m, 15–20 m and >20 m) (Fig. 2b), with all vegetation >3 
m above the ground classified as ‘tree canopy’ for further analysis. All datasets were aligned with 
sub-pixel accuracy and geometrically corrected to an accuracy of +/- 2 × GSD. All multispectral data 
was radiometrically corrected to reflectance and seamless multispectral orthomosaics generated 
(e.g., Figs. 2c–2d). 

 

 
1 www.arborcarbon.com.au/arbor/remote-sensing-2/index.html 
2 www.ga.gov.au/ 
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Figure 2. Photogrammetric products from airborne ArborCamTM multispectral imagery over Bayside 
Council: (A) true colour orthomosaic; (B) height-stratified vegetation overlaid on true colour 

orthomosaic; (C) false colour composite (near infrared (NIR), red, green); (D) false colour composite 
(NIR, red-edge, blue). Bar = 100 m. 

 

4.3. Ground truth data 

The georeferenced base layer true colour orthomosaic was imported into the Forestry Corporation of 
NSW MapApp© field mapping program (Version 2.9.9.7, Forestry Corporation of NSW, Sydney, 
Australia) in an iPad with an in-built GPS. Individual trees of Pinus and Platanus were then accurately 
located on the imagery via ground surveys in March 2021 (e.g., Fig. 3c), prior to autumn leaf fall of 
Platanus. Not all trees in Bayside Council were inspected; we primarily focused on areas where we 
had prior knowledge of the location of stands of Pinus and Platanus from our forest biosecurity 
surveillance program. Trees were identified to species, with more than 650 Pinus trees mapped onto 
the imagery (primarily Pinus radiata, with smaller numbers of P. pinaster Aiton, P. halepensis Mill. 
and P. ponderosa P.Lawson & C.Lawson) and 446 Platanus trees (primarily Platanus x acerifolia 
(Aiton) Willd., and a few Pl. orientalis L.). Trees other than Pinus or Platanus were not mapped. To be 
used in the CNN models, each tree point was reviewed and trees of poor crown condition or where 
the crown could not be easily identified in the imagery were removed from the dataset, leaving a 
total of 630 Pinus and 439 Platanus. 

4.4. Machine learning CNN models 

Data was first pre-processed to create labelled tree polygons to be used in training. Individual tree 
crowns were detected and delineated across the whole dataset using a CNN model previously 
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developed by ArborCarbon and supported by numerous associated ArborCam multispectral outputs3. 
For the analysis, species-level classifications were ignored, and only genus-level classifications were 
used. Geolocations of target tree genera (Pinus and Platanus) identified on the ground were aligned 
with tree crowns and the tree crowns were classified as Pinus, Platanus or ‘other’ (Fig. 3). As trees 
other than Pinus or Platanus were not manually located onto the imagery, for this exercise, we 
assumed all delineated tree crowns that were not identified in the ground truth dataset were 
classified as ‘other’.  
 

 

Figure 3. Example of the ‘end-to-end’ workflow process from data pre-processing to training of the 
models. Including: (A) tree instance detection, (B) tree crown delineation, (C) addition of ground 
truth data, (D) eventual tree crown labelling. DTM = digital terrain model; DSM = digital surface 

model; CNN = convoluted neural network. 
 
In this study, two distinct model frameworks were evaluated (M1 and M2) based on the CNN 
architecture. M1 used an image classification approach in which the model was trained to predict the 
genus label (Platanus, Pinus, other) when presented with an ArborCam image, cropped around a 
tree. M2 performed instance segmentation, i.e., distinguished different instances of the same 
category (e.g., a tree genus). The algorithm detected the targets (i.e., tree crowns), and identified the 
pixels associated with each instance of the target within the image. M1 and M2 were trained using 
525 Pinus trees and 388 Platanus trees and validated using 105 Pinus trees and 41 Platanus, 
respectively. The validation set was defined by manually delineating a contiguous polygon over a 
subset of the ground truth points. This ensured that the validation set was spatially independent 
from the training data and there would be no overlap between training and validation trees.  
 
M1 had three target categories: Platanus, Pinus, Other. The location of each tree crown was used to 
clip a 10-band raster image from the ArborCam ortho-mosaic (150 × 150 pixels). These training 
images were used to train a model to predict the corresponding category (Platanus, Pinus, Other). A 

 
3 www.arborcarbon.com.au/index.html 
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total of 2,000 ‘other’ trees were selected at random for training and a further 1,014 from within the 
validation areas were used for validation. A weighted training procedure was used to account for the 
imbalanced training data. For M2, two separate binary models were trained for each target genus 
(Platanus and Pinus). The orthomosaic was clipped into 731 overlapping training tiles (500 × 500 
pixels), each containing at least one target tree. A matching mask image was produced for each tile 
identifying the pixels corresponding to the target trees. All other pixels, including ‘other’ trees, were 
considered background. The model was then trained to identify which pixels belonged to the target 
trees. After model training, predictions were output to geospatial vector format, delineating 
contiguous groups of pixels as a tree. 
 
For each model, training and validation loss was monitored to determine the length of the training 
period. Training was stopped when validation loss failed to improve on consecutive epochs. A range 
of standard hyperparameters were evaluated including loss functions, image augmentations, 
learning rate, batch size etc. however, this was not exhaustive. 

4.5. Accuracy assessment 

To compare the accuracy of each model, we used common evaluation statistics for classification 
(Goutte and Gaussier 2005; Powers 2011; Pearse et al. 2021). However, rather than using the model 
validation metrics produced during training, we first converted our predictions back to a geospatial 
format for the whole of the validation area. The predicted tree polygons were then compared to the 
ground truth data by intersection with the training polygons. Predictions which intersected the 
ground truth tree polygons for the relevant class were considered true positives. Predicted tree 
canopies that did not intersect a ground-truth canopy polygon of the same class were considered 
false positives (i.e., a commission error). False negatives were defined as any ground truth tree 
polygon which did not intersect the predictions (i.e., a tree is missed; an omission error). True 
negatives were calculated as the total number of trees identified in the validation area subtracting 
true-positives, false-positives, and false negatives. 
 
We then calculated overall accuracy (a measure of how the classifier’s predictions were correct), 
precision (i.e., positive predictive value or user’s accuracy; a measure of the proportion of positive 
predictions that were correct), sensitivity (i.e., recall or producer’s accuracy; a measure of the actual 
positives that were correctly identified) and the F1-score (the overall accuracy taking both 
commission and omission errors into account). We also used confusion matrices to illustrate the 
number of correctly classified trees per genera and the false negatives and false positives.  

5. Results 

5.1. Classification accuracy 

Table 1 shows a comparison between the classification accuracy of M1 and M2. M1 achieved a 
classification accuracy of 85%, with low precision (41–46%), good sensitivity (90%) for both Pinus and 
Platanus, and moderate F1-scores for Pinus (56%) and Platanus (61%). Classification accuracy for M2 
was higher, 92.1% for Pinus and 95.2% for Platanus, with moderate precision for both Pinus (61.3%) 
and Platanus (77.6%) and high sensitivity for both Pinus (95.2%) and Platanus (92.7%). The F1-score 
increased around 20 percentage points for the two target genera for M2, up to 74.6% for Pinus and 
84.4% for Platanus.  

The confusion matrices (Fig. 4) show the detailed results of predictions for the two models and 
whether they were accurate (true negative, true positive) or incorrect (false negative, false positive). 
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The number in each cell represents the number of classified images (trees). For M1, a high number of 
‘other’ trees were classified as Pinus and Platanus (i.e., false positives), 108 and 53, respectively, 
while a relatively low number of Pinus and Platanus trees were misclassified as ‘other’ (i.e., false 
negatives), 11 and 4, respectively. For M2, although a relatively high number of false positives were 
predicted (63 for Pinus and 11 for Platanus), the false negatives were low (5 for Pinus and 3 for 
Platanus).  

 

Table 1. Classification accuracy metrics for the three models M1 and M2-Pinus and M2-Platanus. 

Model M1 M2-Pinus M2-Platanus 

Target Pinus Platanus Other Pinus Platanus 

Accuracy 0.85* 0.921 0.952 

Precision 0.47 0.41 0.98 0.613 0.776 

Sensitivity 0.90 0.90 0.84 0.952 0.927 

F1-score 0.56 0.61 0.91 0.746 0.844 

* accuracy for three classes 

 

 
Figure 4. Confusion matrices of convolutional neural networks for (A) M1, (B) M2 for Pinus and (C) 
M2 for Platanus. The vertical axis is the ground truth and the horizontal axis the model prediction. 

The number in each cell indicates the number of classified images (=trees). 

 

6. Discussion and Conclusion 

This study demonstrated the effectiveness of using CNN deep learning algorithms with high-spatial 
resolution ArborCam imagery to accurately classify Pinus and Platanus trees in a heterogenous urban 
landscape. Numerous automated machine learning methods have been applied to the detection of 
individual tree crowns using high spatial resolution imagery in urban and peri-urban areas for a range 
of outputs, including green-space and tree species mapping, inventory and assessment, change 
detection, ecosystem services, and biomass and carbon estimation (Fassnacht et al. 2016; 
Shahtahmassebi et al. 2021). Recently, deep learning has emerged as a powerful tool due to its 
superior performance in terms of the accuracy and versatility of the models. There has been a sharp 
increase in the application of CNNs which work on raw data and are automatically able to detect and 
label specific objects especially for tree species mapping (Kattenborn et al. 2021). However, the use 

A B C 
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of such an approach to aid in biosecurity is only just now being investigated. Pearse et al. (2021) 
evaluated a deep learning CNN model with high-resolution aerial imagery to detect and map 
Metrosideros excelsa Sol. ex Gaertn. trees in urban areas in New Zealand during the attempted 
eradication of Austropuccinia psidii (G.Winter) Beenken. They demonstrated the application of this 
cost-effective approach for use in surveillance over large areas following the detection of an invasive 
species. Our work expands on this by targeting two key host genera in areas of high risk for 
establishment of exotic forest pests in Australia to aid in biosecurity surveillance, prior to an 
incursion (i.e., sentinel tree surveillance) and in the event of an incursion (e.g., delimiting 
surveillance).  
 
Using high-resolution airborne multispectral aerial imagery and a CNN framework, we were able to 
delineate and classify with high accuracy individual trees to genus level in a heterogenous, complex 
urban landscape. M1 achieved a classification accuracy of 85%, which improved to 92.1% (Pinus) and 
95.2% (Platanus) with M2. This is comparable to similar studies using RGB imagery, with Pearse et al. 
(2021) achieving an accuracy of 92.7% to 97.4% for a single species in New Zealand, using 10 cm 
resolution imagery. These higher accuracy results were obtained using multi-temporal datasets and 
incorporating clear phenological traits (i.e., flowering) in model development (Pearse et al. 2021). 
Martins et al. (2021) reported accuracy (producer’s accuracy) between 85.5% and 89.9% for multiple 
species in Brazil using 15 cm resolution. Although in this study (Martins et al. 2021), the metric 
reported was the accuracy of pixel-wise classification (i.e., the number of pixels within each image 
classified as belonging to the targets). This differs from our study because of the differing objectives. 
Our study was focused on the biosecurity application, where the presence/absence of the target is 
the only metric of interest, rather than the precision of the tree crown delineation.  
 
Lower classification accuracies have been achieved using low spatial resolution satellite imagery (e.g., 
84.2% [Jombo et al. 2020] to 85.5% [Tiggs et al. 2013]). Li et al. (2015) increased classification 
accuracy by 10–20% by conducting bi-temporal analysis of satellite imagery (summer and autumn), 
with 80.3% overall accuracy at one site and 92.5% overall accuracy at a second site. Numerous 
studies have shown the potential for individual tree species detection and classification using CNNs 
of multispectral imagery captured by UAVs, with accuracies generally greater than 90% (Csillik et al. 
2018; Egli and Höpke 2020; Lobo Torres et al. 2021; Onishi and Ike 2021). UAVs, however, while able 
to capture high spatial resolution at low-cost, are typically limited in spatial extent and locations 
where they can be flown. Multispectral imagery from fixed-wing aircraft is a good middle ground, 
with high spatial resolution, large spatial extent, and relatively inexpensive (Fassnacht et al. 2016; 
Shahtahmassebi et al. 2021). There is now a growth in studies using CNNs with multispectral imagery 
from fixed-wing aircraft to detect and map tree species with high accuracy (Martins et al. 2021; 
Pearse et al. 2021; Kattenborn et al. 2020).  
 
A key reason for the success of the current study was the accurate ground validation of tree species 
directly onto the high-resolution imagery. We mapped 1069 individual tree crowns to the exact 
location on the ArborCam imagery and achieved greater than 92% accuracy. Martins et al. (2021) 
geolocated substantially less trees — 370 across nine tree species — but still obtained high species 
classification accuracy (>85%) in an urban landscape in Brazil, with accuracy increasing to 89.8% 
when they used data for species with more than 30 individuals represented. Pearse et al. (2021) 
geolocated 2,300 trees, including target and non-target (‘other’) species, and obtained accuracies of 
92.7%, which increased to 97.4% when they included phenology in the classification model. 
 
The accuracies in our study are likely to be acceptable for early-detection surveillance as part of a 
high-risk site surveillance program. However, if we are to use this technology to identify and map 
host species in an emergency response, an exhaustive detection of hosts is needed. In this case, 
along with overall accuracy we also need to understand both precision and sensitivity (Goutte and 
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Gaussier 2005; Powers 2011; Pearse et al. 2021). Our study demonstrated relatively low levels of 
false positives are detected, and while these may result in occasional unnecessary surveillance costs 
being incurred, these are likely to be small compared to the efficiencies gained from not having to 
undertake ground surveys. There are also added benefits of being able to identify trees across a 
greater area in both public and private land. Sensitivity in a biosecurity surveillance context means 
that target hosts are not detected by the classifier (i.e., false negatives), and potentially not assessed 
for pest attack nor selected for subsequent control, resulting in an undetected source of ongoing 
infestation. M2 in our study increased precision from 41.0% (Platanus) and 46.5% (Pinus) to 77.6% 
(Platanus) and 61.3% (Pinus), which still resulted in 74 trees incorrectly identified (false positives). 
Sensitivity for both models was good, with M2 increasing sensitivity from 90.2% (Platanus) and 89.5% 
(Pinus) to 92.7% (Platanus) and 95.2% (Pinus). This resulted in only 8 trees not being detected (false 
negatives). In the context of delimiting surveillance during an emergency response, sensitivity is the 
most important metric, as there is a potentially high consequence of a false negative (Powers 2011). 
However, it is important to evaluate these accuracies against the alternative approach, which 
currently involves manual on-ground assessments, wherein many potential trees go undetected. 
 
Current host mapping via ground surveys is labour- and resource-intensive, unable to cover large 
areas quickly, and provides incomplete coverage (i.e., a significant proportion of trees remain 
undetected). To effectively map the majority of host trees in a given local government area, 
personnel need to travel hundreds of kilometres of road in vehicles and by foot, traversing a mix of 
public and private property. For example, there are more than 530 km of roads in Bayside Council 
and over 500 ha of parks. Manual identification of trees by trained personnel could be assumed to 
have an accuracy of near 100%. However, this does not account for the numerous challenges such as 
access to private land for inspection, the limited area which can be accurately covered within a 
period of time and finding adequate numbers of trained staff to rapidly respond to emergency 
incursions. The remote sensing approach has the advantage that the accuracy level can be easily 
evaluated and understood and can be incorporated into the risk assessment process. Furthermore, 
detection of target trees on private property enables targeted contact with private landowners. Also, 
the cost at which a given area can be assessed, and speed, is likely to be much lower using remote 
sensing compared with manual identification alone. Given that the speed of a biosecurity response 
can greatly increase its chances of success and reduce subsequent management costs, the advantage 
of a rapid turnaround should not be undervalued.  
 
Limitations of this study primarily focus on the fact ‘other’ trees were not validated on the ground. 
Also, while an extensive survey was conducted to map Pinus and Platanus, not all roads were 
traversed and many trees on private property would not have been visible, and so it is likely that not 
all Pinus and Platanus trees were mapped (a known limitation of ground validation); any missed 
Pinus or Platanus would have been allocated as an ‘other’ tree in our study. To test this, we used 
Google Street View™ to validate several of the false positive results (i.e., the model identified a 
target tree [Pinus or Platanus], but we had not mapped it as a target tree on the ground). In the few 
cases we investigated (data not shown), the model prediction was correct (i.e., the predicted 
Platanus tree was in fact a Platanus); we had just not surveyed the roads where those trees were 
located. Others have used Google Street View for tree classification and urban green-space mapping 
(Li et al. 2015; Richards and Edwards 2017; Barbierato et al. 2020). We suggest combing aerial 
imagery with Google Street View and classical ground validation to detect and classify host trees for 
biosecurity surveillance more accurately and efficiently. 
 
The potential benefits of conducting early-detection surveillance in urban areas is evidenced by many 
invasive species being detected on amenity trees in urban areas. Well known examples include 
Anoplophora glabripennis (Dodds and Orwig 2011), Agrilus planipennis (Siegert et al. 2014), 
Phytophthora ramorum (Brasier et al. 2004), Hymenoscyphus fraxineus (Mitchell et al. 2014), 
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Ophiostoma novo-ulmi (Ganely and Bulman 2016) and Ceratocystis platani (Engelbrecht et al. 2014). 
In Australia, Carnegie and Nahrung (2019) identified numerous examples of new detections of exotic 
pests detected on amenity trees in urban settings in the past 25 years, including Marchelina hellenica 
(Gennadius) (Plant Health Australia 2017) and Bursaphelenchus hunanensis Yin, Fang & Tarjan 
(Hodda et al. 2004; Smith et al. 2008) in Melbourne, Rugonectria castaneicola (W. Yamam. & Oyasu) 
Hirooka & P. Chaverri (Carnegie and Nahrung 2019) and Corythucha ciliata (Say) in Sydney (Dominak 
et al. 2007), Essigella californica (Essig.) in Canberra (Carver and Kent 2000) and Trichoferus 
campestris (Faldermann) in Brisbane (Plant Health Australia 2017). More recent examples include 
Pseudocercospora platanigena Videira & Crous in Sydney (Carnegie et al. 2021) and Euwallacea 
fornicatus in Perth (Department of Primary Industries and Regional Development 2022). If exotic 
pests are not detected early enough, they can establish and spread, making eradication or 
containment attempts more costly and challenging (Liebhold et al. 2016; Lovett et al. 2016), and the 
reason why so few exotic forest pest incursions have been eradicated (Anderson et al. 2017; Liebhold 
and Kean 2019; Carnegie and Nahrung 2019). Current early-detection surveillance for forest pests in 
Australia is inadequate (Tovar et al. 2017; Carnegie et al. 2018; Carnegie et al. 2022). Annual post-
border surveillance in areas at high risk for entry of exotic forest pests is not conducted nationally or 
in a coordinated fashion. It is often limited by a lack of adequate human and material resources and 
ad hoc knowledge of the potential host trees existing within risk areas. This in turn limits the ability 
to monitor or survey for exotic pest through inspection of potential host for the purposes of early 
detection or during an emergency incursion response. A proposed national program that includes 
specific surveillance through high-risk site surveillance and general surveillance through stakeholder 
engagement and training will greatly enhance early detection (Carnegie et al. 2022). Knowing the 
distribution of hosts of primary pests is key to such surveillance. 
 
There is wide variation in cost, spatial extent captured, and species classification accuracy between 
the various remote sensing platforms (Fassnacht et al. 2016; Shahtahmassebi et al. 2021). 
Hyperspectral plus LiDAR is high accuracy and high cost, but generally lower resolution and spatial 
coverage. High-resolution multispectral is generally good for accuracy, moderate cost, and higher 
spatial resolution and extent. Satellites are very low cost to free, large spatial extent, but lower 
spatial resolution and accuracy. The high accuracy in our study of the two target tree genera using 
high-resolution aerial imagery shows promise for this method to be used more broadly. The scope 
for using remote sensing and machine learning for forest biosecurity surveillance in urban landscapes 
is enormous. We propose a technology-driven host-mapping biosecurity partnership whereby state 
and national biosecurity agencies work with local councils and commercial entities to map key hosts 
of biosecurity concern. Many local councils already capture imagery for management of urban green 
space (e.g., City of Melbourne 2011; City of Sydney 2013; City of South Perth 2017). Our proposed 
partnership would utilise this imagery, collaboratively, for multiple beneficial outcomes. Pre-existing 
or newly captured imagery, of adequate spatial and spectral resolution and overlap, could be used to 
develop models and produce maps of many other key hosts. This would require some ground-
truthing for model validation, which could be captured by local council staff. 
 
Further work is needed to refine the model. Testing of the model in other local council areas is 
needed. Optimising the amount of ground-truthing is required to balance the fine-line between 
model accuracy (with lots of ground-truthing) and limited resources (less ground-truthing). 
Furthermore, we need to determine thresholds of accuracy for the two types of surveillance needs. 
Early detection surveillance (high-risk site surveillance) requires that many hosts are located across a 
particular area, but not all of them, whereases during an emergency response (eradication) a higher 
accuracy threshold may be needed. It might be that most hosts are located using remote sensing and 
machine learning technology then the remaining located by traditional methods. This is likely to be 
more efficient at tree-location than traditional ground surveys only. Factoring in the cost of airborne 
acquisition and data analysis needs to be considered, but in instances where the area of interest is 
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large, these costs, both in time and human resources, may be less than large scale ground 
surveillance. Our study was a proof-of-concept; this method has recently been used to map host 
trees of Euwallacea fornicatus in Perth following the detection of this invasive polyphagous pest in 
August 2021 (P. Barber, pers. comm.). A review of that program will shed light on the feasibility of 
this technology for future programs. 

Conclusion 

This study evaluated high-resolution airborne ArborCam imagery for tree species classification in a 
complex urban environment as a potential application for forest biosecurity surveillance. An object 
instance segmentation of tree crowns was achieved using a deep learning CNN algorithm; one model 
for all trees; a second model running on Pinus and Platanus. Two dominant tree genera, Pinus and 
Platanus, were examined in a single local government area in Sydney, Australia. These two genera 
are hosts of high priority tree pests for Australia. 
 
Overall accuracy of M1 was 85%, which increased to 92.1% for Pinus and 95.2% for Platanus with M2. 
While precision was relatively low (41.0%–46.5% for M1; 61.3%–77.6% for M2), sensitivity was high 
for both the first (89.5%–90.2%) and second (92.7%–95.2%) model. We suggest that sensitivity is the 
most important accuracy metric for biosecurity surveillance. While these accuracies may satisfy 
requirements for the location of sentinel trees for early-detection surveillance, they may not satisfy 
requirements for emergency response surveillance following the detection of an invasive pest. More 
work may be needed to improve these accuracies. 
 
Our future work will focus on capturing ground data for the ‘other’ tree category and investigating 
the false positives and false negatives in the current data. This work then needs to be expanded to a 
broader suite of tree species and across a wider geographic area. There is also scope to investigate 
differences in accuracy between RBG and multispectral imagery, or using bi-temporal imagery. If our 
study proves applicable across a broader range of urban landscapes and city councils it will not only 
be a game-changer for forest biosecurity in Australia but also for urban green space management 
more broadly.  
 

7. Recommendations 

We recommend a technology-driven host-mapping biosecurity partnership whereby state and 
national biosecurity agencies work with local councils and commercial entities to map key hosts of 
biosecurity concern. 

9. Appendices, References, Publications etc. 
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Supplementary Figure 1. Publicly available street-tree data for State capitals in Australia; available from the 

Open Trees Database [http://opentrees.org/#pos=1/-37.8/145]. [Accessed 14/02/2022] 
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Supplementary Table 1. Invasive species identified as priority pests by the Australian government and plant industries whose hosts include Pinus or Platanus. NPPP = National 

Priority Plant Pest; EEPL = Exotic Environmental Pest List. HRSS = High Risk Site Surveillance. 

Pest/Pathogen Common name Host targeted 
during HRSS 

Species on National or Industry High Priority 

Pest list # 

Other industries potentially affected * 

Anoplophora glabripennis Anoplophora 
chinensis Anoplophora malasiaca 

Asian longhorn beetle, 
Black and white citrus 
longhorn, White-spotted 
longhorn beetle 

Platanus NPPP Citrus, Apples & Pears, Walnut, 
Stonefruit, Chestnuts, Blueberries, 
Lychees, amenity, environment 

Arhopalus ferus Burnt pine longhorn beetle Pinus 
 

Plantation Forests, amenity 

Dendroctonus ponderosae^ Mountain pine beetle Pinus Plantation Forests amenity 

Dendroctonus valens Red turpentine beetle Pinus Plantation Forests amenity 

Endocronartium harknessii^ Western gall rust Pinus Plantation Forests amenity 

Euwallacea fornicatus1 Polyphagous shot hole 
borer 

Platanus EEPL Amenity, nursery, fruit, nut tree, 

plantation forestry¥ 

Fusarium euwallacea1 Fusarium dieback Platanus EEPL Amenity, nursery, fruit, nut tree, 

plantation forestry¥ 

Fusarium circinatum^ Pine pitch canker Pinus NPPP, Plantation Forests amenity 

Hylesia nigricans Burning moth Platanus Plantation Forests Almonds, Apples & Pears, Stonefruit, 
Cherries, Chestnuts,  

Ips typographus^ Spruce bark beetle Pinus Plantation Forests amenity 

Lymantria dispar complex^ Gypsy moths Pinus, Platanus NPPP, Apples & Pears, Chestnuts, Hazelnuts, 
Pistachios, Plantation Forests, Production 
Nurseries, Stonefruit, Walnuts  

amenity, environment 
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Supplementary Table 1 continued 

Pest/Pathogen Common name Host targeted for 
HRSS 

Species on National or Industry High Priority 

Pest list # 

Other industries potentially affected * 

Lymantria monacha^ Nun moth Pinus, Platanus Apples & Pears, Plantation Forests, Truffles,  Blueberries, Stonefruit, amenity 

Marchalina hellenica^^ Giant pine scale Pinus   Plantation Forests, amenity 

Monochamus alternatus2^ 
Monochamus galloprovincialis2 

Pine sawyer beetles Pinus NPPP, Plantation Forests amenity 

Bursaphelenchus xylophilus2^ Pine wilt nematode Pinus NPPP, Plantation Forests amenity 

Orgyia thyellina^ White spotted tussock 
moth 

Pinus Plantation Forests amenity 

Phytophthora pinifolia  Dano foliar del Pino Pinus Plantation Forests amenity 

Phytophthora ramorum^  Sudden oak death,  
ramorum blight  

Pinus, Platanus  NPPP, EEPL, Avocado, Blueberries, Chestnuts, 
Hazelnuts, Macadamias, Plantation Forests, 
Production Nurseries, Tea Tree, Truffles 

Amenity 

Phytophthra pluvialis Red needle cast Pinus Plantation Forests amenity 

Tomicus piniperda Pine shoot beetle Pinus Plantation Forests amenity 

Urocerus gigas^ Giant wood wasp Pinus Plantation Forests amenity 

#
 www.planthealthaustralia.com.au/national-programs/national-plant-biosecurity-status-report/ 

* www.agriculture.gov.au/pests-diseases-weeds/plant; www.dpi.gov.au/biosecurity/plant/insect-pests-and-plant-diseases/; www.planthealthaustralia.com.au/industries/plantation-

forestry/ 
1, 2 

Insect–pathogen/nematode vector  
^ Notifiable pest in New South Wales [https://legislation.nsw.gov.au/view/html/inforce/current/act-2015-024#sch.2] 

^^ Exotic to New South Wales
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