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1. Executive Summary 

Before disease symptoms appear, plant pathogens and their hosts deploy chemical cues, including 

metabolites and proteins, that impact the speed and degree of pathogenesis.  The objective of this 

study was to identify chemical and genetic cues produced by both Austropuccinia psidii and plant, prior 

to visible disease and investigate how these cues influence pathogenesis and relate to plant 

susceptibility (resistant – no observed disease; hypersensitive – localised necrosis; and susceptible – 

significant sign of disease).  

Using an untargeted metabolomics approach, we identified a unique molecular fingerprint in A. psidii-

infected Melaleuca quinquenervia leaves during the early stages of infection. Further analysis of the 

metabolome at 24 hours and 48 hours after infection identified a unique subset of 19 metabolites that 

are unique to the resistant phenotype which may be important in the resistance mechanism and could 

be used as a defined metabolite fingerprint to detect the resistant phenotype during early infection. 

Metabolomics also established that a different metabolite fingerprint also exists according to the plant 

susceptibility prior to infection. These metabolites may play an important role in the plant’s resistance 

mechanism. 

A. psidii expression of small secreted proteins (SSPs) could be detected 48 hours after inoculation in 

Eucalyptus grandis leaves. These encoded SSPs are important in the pathogenesis of A. psidii. In 

particular, three of these SSPs were highly expressed in the susceptible plant leaves, indicating their 

importance for host colonisation in the susceptible phenotype and showing that they could be used 

for detecting early infection in susceptible hosts. 

Gene expression in the host, E. grandis, was analysed prior to- and at 48 hours after A. psidii 

inoculation. The host response to infection differed depending on resistance profile. Differentially 

expressed genes included genes encoding known disease resistance proteins, as well as other 

pathways associated with disease resistance including secondary metabolic and phenylpropanoid 

metabolic pathways and protein phosphorylation. Gene expression markers for plant susceptibility in 

uninfected cells were also identified. 

Together, the results of this study highlight that both metabolomics and transcriptomics reveal 

chemical and genetic cues that can be used as molecular fingerprints to detect early infection and the 

corresponding phenotype of the host. In addition, molecular fingerprints were identified that 

characterise the phenotype prior to infection, which may be an important tool to identify resistant 

plants in the field or for plant breeding. Future work could further characterise the genes and 

molecules identified in this study to elucidate the molecular mechanisms of host resistance and A. 

psidii pathogenesis.  
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2. Introduction 

The pathogen Austropuccinia psidii, also known as myrtle rust, is a significant threat to Australian 

ecosystems as it may lead to the decline, and potential loss, of many Myrtaceae species. To date, 382 

native Australian species are known to be vulnerable to A. psidii infection. Within each of these species, 

however, there is a range of responses to infection from resistant to highly susceptible due to 

variations in genotypes between individuals (Makinson et al. 2020). In Australia, 43 species are severely 

affected and therefore require focused and timely research to identify possible resistant germplasm 

and/or populations (Makinson et al., 2020). Various attributes have been implicated in pre-formed 

resistance to A. psidii infection in Australian Myrtaceae species. These include cuticular waxes (Santos 

et al. 2019) and terpene composition in Eucalyptus sp. (Yong et al., 2019). Recent transcriptomics 

experiments have also highlighted differential expression of genes of interest in resistant and 

susceptible individuals prior to inoculation (Hsieh et al., 2018; S. A. Santos et al., 2020; Tobias et al., 

2018). Early gene expression in resistant plants indicates early recognition of the pathogen within 24 

hours post infection and activation of defence responses in resistant individuals of Eucalyptus grandis 

and Syzygium luehmannii compared with susceptible individuals (Tobias et al., 2018; dos Santos et al., 

2019). Early gene expression in the eukaryotic plant pathogens, such as rust, includes genes encoding 

small secreted proteins (SSPs) that are produced to facilitate pathogenesis.  

Previous studies are only just beginning to inform our understanding of the mechanisms that have 

evolved within the Myrtaceae that enable certain individuals/species to resist A. psidii.  In addition to 

the examples given above, the Myrtaceae are known to produce a wealth of novel metabolites (i.e. 

small bioactive chemicals) that may also be used in plant defenses against pathogens. ‘Metabolomics’ 

is the investigation of these small chemicals that are present within a biological sample at a given time. 

These chemicals can include substrates, intermediates and products of metabolic pathways, as well as 

signalling molecules, hormones, and secondary metabolites. By adjusting the extraction method for 

isolating metabolites and the instrumentation used for separation and detection, a structurally 

different subset of metabolites may be analysed. Targeted metabolomics is the analysis of a set of 

known metabolites, such as Eucalyptus sp. terpenes (Yong et al., 2019), while untargeted 

metabolomics investigates both known and unknown metabolites. Recently, untargeted 

metabolomics has shown promise in identifying resistance biomarkers present in a broad range of 

human and plant diseases, including those found early in Phytophthora infection of tomatoes (Garcia 

et al., 2018), drought resistance in potatoes (Sprenger et al., 2018), and Plasmopara viticola defence 

response in a resistant grape variety (Chitarrini et al., 2017). The broad range of applications of 

metabolomics in assessing levels and mechanisms of disease resistance through identification of novel 

biomarkers demonstrates that this methodology could be applied to monitoring resistance to A. psidii 

during the early stages of infection. 

  

https://paperpile.com/c/rQOwOq/X7dx
https://paperpile.com/c/rQOwOq/X7dx
https://paperpile.com/c/sOIWSq/47Im
https://paperpile.com/c/sOIWSq/FI0o+nJTH+yPmD
https://paperpile.com/c/sOIWSq/FI0o+nJTH+yPmD
https://paperpile.com/c/sOIWSq/FI0o
https://paperpile.com/c/sOIWSq/jQtZ
https://paperpile.com/c/sOIWSq/jQtZ
https://paperpile.com/c/sOIWSq/47Im
https://paperpile.com/c/sOIWSq/igZl
https://paperpile.com/c/sOIWSq/igZl
https://paperpile.com/c/sOIWSq/h4MY
https://paperpile.com/c/sOIWSq/QP8b
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3. Aim 

The overarching aim in the PBSF023 project is to identify A. psidii-specific chemical cues, both 

metabolites and nucleic acids, produced early in the interaction between pathogen and host, prior 

to visible disease, and investigate how these cues correlate with pathogenesis. 

More specifically, the objectives, listed in the proposal, are: 

1.        Identification of A. psidii-specific chemicals enabling novel, sensitive screening tests 

2.     Identification of fast-evolving proteins in A. psidii for use in future population and 

evolutionary studies 

3.        Data on plant traits associated with disease resistance 

4.        Scoping of new resistance pathways and control options for future research 

 

4. Methods/Process 

4.1 Untargeted metabolomics analysis of Melaleuca quinquenervia during early intracellular 

Austropuccinia psidii infection 

4.1.1 Austropuccinia psidii inoculation of Melaleuca quinquenervia: A total of nine Melaleuca 

quinquenervia plants of known myrtle rust response phenotype (three each of resistant, hypersensitive 

and susceptible), were chosen for analysis. Each plant was inoculated with A. psidii at the Queensland 

Department of Agriculture and Fisheries by Dr. Louise Shuey. Samples of leaves were collected at 0 

hours, 24 hours, 48 hours and 5 days after inoculation. Six replicates of young leaves from fresh growth 

on each plant were collected at each time point, weighed and stored at -80 C prior to analysis. 

4.1.2 Leaf metabolite extraction: The frozen leaf samples were weighed and immediately ground into 

powder by bead-bashing in 200 µl extraction solvent (4:4:2 methanol:acetonitrile:deionized water) 

twice for 30 seconds each. The leaf:solvent mixture was then added with 300 µl additional extraction 

solvent, and then vortexed to mix for 10 seconds. The leaf:solvent mixture was then sonicated in icy 

water for 25 min followed by centrifugation at 12,000 rpm for 10 min. The supernatants were collected 

while avoiding undissolved particles, and filtered through a 0.22 µm syringe filter. The resulting 

metabolite extracts were stored at -80 °C until metabolite profiling was performed. 

4.1.3 Ultra Performance Liquid Chromatography High Definition Mass Spectrometry with Ion 

Mobility (UPLC HDMSE) analysis: Leaf extracts were analysed on a Waters Acquity I-Class UPLC system 

and a Waters Synapt G2-Si HDMS with a Waters UniSpray Ionisation source. The metabolites were 

separated on a Waters ACQUITY UPLC HSS T3 1.8µm 100 x 2.1mm Column at 35° C. The injection 

volume was 2 μL. The mobile phases were A (Water + 0.1% Formic Acid) and B (Acetonitrile + 0.1% 

Formic Acid). The chromatographic flow rate was 0.5 mL/min with a 9 min gradient, with mobile phase 

A held at 99% for 1 min, decreased to 85% over 1 min, decreased to 50% over 2 mins, decreased to 5% 

over 2 min and increased to 99% over 2 mins. Leucine Enkephalin Lockspray solution (Waters, 1ng/mL) 

was used as a standard. 
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Data acquisition was performed with ion mobility separation followed by mass fragmentation and high 

resolution mass analysis. The mass range of metabolites acquired was 50 - 1200 m/z, the scan time 

was 0.2 seconds and the elevated energy transfer collision voltage was 20 - 50 eV. For this experiment, 

the instrument was run in positive ionisation mode with the following settings: Capillary: 0.5 kV, source 

temperature: 120 °C, sampling cone: 30 V, source offset: 80 V, desolvation temperature: 500 °C, 

desolvation gas flow: 800 L/Hr, cone gas flow: 20 L/Hr. 

4.1.4 Statistical and molecular analysis: The compound measurement table containing the feature 

spectral information and peak intensity of all samples (including quality-control samples and solvent 

blanks) was exported from the Progenesis QI for metabolomics (version 2.4) and further analyses were 

performed using R (version 3.6.3). The data table was scaled by leaf weight and low intensity peaks 

(intensity < 500) were removed after blank subtraction. The data table was then imported into 

MetaboAnalystR (version 3.0.3). To improve the power of downstream statistical testing, features that 

are missing in > 50% samples and near-constant across all samples were filtered based on interquartile 

range. Additionally, outliers were removed after visual identification using principal component 

analysis (PCA). The data table was log-transformed before two-way analysis of variance (ANOVA) with 

multiple comparisons correction (false discovery rate). The significant features with p < 0.05 were 

selected for further clustering analyses. Hierarchical clustering and k-means clustering were performed 

using R (version 3.6.3). The log-transformed data table was also used for permutational multivariate 

analysis of variance (PERMANOVA) with the pairwise Adonis wrapper 

(https://github.com/pmartinezarbizu/pairwiseAdonis) based on the ‘adonis’ function of the vegan 

package (version 2.5-6) on R. Progenesis QI was used to structurally classify the significant metabolites 

identified by the two-way ANOVA and clustering analyses. Based on the identities provided by the 

Chemical Entities of Biological Interest (ChEBI), metabolite enrichment analysis was performed on the 

MetaboAnalyst web platform ( https://www.metaboanalyst.ca/ ).  

4.2 Transcriptomic and small RNA analysis of Eucalyptus grandis during early intracellular 

Austropuccinia psidii infection 

4.2.1 Austropuccinia psidii inoculation of Eucalyptus grandis and phenotype assessment: Forty 

Eucalyptus grandis seeds were germinated and grown at the Western Sydney University (WSU) in 

controlled growth chambers with 16 h light/8 h dark cycle at 25˚C, 70% relative humidity and 500 μmol 

m-2 s-1 light intensity. Cuttings of the plants consisting of 4-6 juvenile leaves were taken and placed in 

water agar (1%) within 50 ml tubes or 500 ml jars, depending on the size of the cutting.  Infection with 

A. psidii spores was performed at the University of Sydney Plant Breeding Institute using the following 

protocol. Spores were collected from heavily infected Syzygium jambos plants by submerging the 

infected leaves in isopar oil. The inoculum was sprayed onto the leaf cuttings of E. grandis and S. 

jambos control while maintained within the tubes or jars. The A. psidii spores were allowed to settle 

for one minute before being capped and transported to WSU. The cuttings were then sprayed with 

water and left in the dark for 12 hours inside the WSU controlled growth chamber to ensure high 

relative humidity to assist with spore germination and infection. Infected cuttings were then 

maintained in a normal light cycle.  

For phenotyping of each of the cuttings, leaves were examined for A. psidii disease symptoms, 14 days 

following inoculation and scored as either resistant, susceptible, or hypersensitive. 

https://github.com/pmartinezarbizu/pairwiseAdonis
https://www.metaboanalyst.ca/
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4.2.2 Leaf RNA extraction and sequencing: Leaf tissue belonging to the resistant and susceptible E. 

grandis myrtle rust phenotypes was collected at 0 hours and 48 hours after A. psidii or mock 

inoculation.  For each treatment, three biological replicates were collected and snap frozen in liquid 

N2 before storing at -80oC. RNA was then extracted from three replicates for each treatment described 

above using the Bioline Plant II RNA extraction kit (Bioline, Sydney, Australia) according to the 

manufacturer’s guidelines. Poly-A RNA libraries were then prepared and sequenced by GENEWIZ 

(Suzhou, China) using an Illumina HiSeq platform and 150bp paired-end configuration.  

4.2.3 RNA-seq data analysis of Austropuccinia psidii small secreted protein effectors in resistant and 

susceptible Eucalyptus grandis: The RNA-seq data was trimmed to remove adapters and low-quality 

sequences, and then aligned to the primary transcripts of the Austropuccinia psidii reference genome 

(Tobias et al., 2020). For mapping to the genome of A. psidii, we used both a default mapping 

stringency that included a similarity fraction of 0.8, a minimum length fraction of 0.8, and a lower 

mapping stringency of 0.7 for both the similarity fraction and minimum length fraction, respectively. 

The maximum number of hits per read was set to 10. The uniquely mapped RNA reads for each 

transcript was determined and normalized to reads per kilobase of transcript, per million mapped 

reads using the RNA-seq analysis function in CLC. Only transcripts with an average normalised count 

of more than 10 in at least one treatment including the resistant and susceptible inoculated only were 

considered for further analysis. The Bioconductor package DESeq2 v1.26.0 (Love et al. 2014) was used 

to normalise raw transcript counts. A principal component analysis (PCA) of Log2 transformed RNA-

sequencing data was performed using the mixomics package in R (Rohart et al., 2017). The relative fold 

change for each transcript was determined against the average expression across all replicate samples 

of the resistant and susceptible treatments and combined with A. psidii small secreted protein (SSP) 

effectors (Tobias et al., 2020) to profile expression patterns in these two genotypes. 

4.2.4 RNA-seq data analysis in Eucalyptus grandis: The trimmed RNA-seq data was then aligned to 

the primary transcripts of the Eucalyptus grandis V2 genome using CLC Genomics Workbench 12 

(Myburg et al. 2014). For alignments, a similarity fraction of 0.8 and minimum length fraction of 0.8 

were used while all other parameters were set to default. The maximum number of hits per read was 

set to 10 and the uniquely mapped RNA reads for each transcript was determined and normalized to 

reads per kilobase of transcript, per million mapped reads using the RNA-seq analysis function in CLC. 

Only transcripts with an average normalised count of more than 10 in at least one treatment and 

control were considered for further analysis. The Bioconductor package DESeq2 v1.26.0 (Love et al. 

2014) was used to normalise raw transcript counts. A principal component analysis (PCA) of Log2 

transformed RNA-sequencing data was performed on samples from all treatments and control using 

the mixomics package in r (Rohart et al., 2017). Statistically significant differentially expressed E. 

grandis genes in the resistant and susceptible genotypes were determined using the Benjamin-

Hochberg test for multiple testing with a false discovery rate (FDR) to control for false positives and 

negatives. Only transcripts with a fold change of -1 < Log2FC > 1 compared to the control and FDR-

corrected p<0.05 were kept for further analysis. The significantly differentially expressed genes in 

resistant and susceptible were visualised using R v4.0.0 (R Core Team, 2020). 
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4.2.5 Identification of genes and pathways driving differences between inoculated resistant and 

susceptible E. grandis genotypes: PCA  of the Log2 transformed RNA-seq data belonging to resistant 

and susceptible E. grandis genotypes inoculated with A. psidii at 48 hai was performed using the 

mixomics package in R (Rohart et al., 2017). The coordinates from PC1 and PC2 were graphed using 

Excel. Analysis of the ellipse identified the radius at 0.03 thereby establishing the cut-off for gene 

importance. All genes were ranked by radius and those with a radius of more than 0.03 on the positive 

side of the x-axis were those with increased abundance in the inoculated resistant treatments, while 

those on the negative side of the x-axis were those with increased abundance in the inoculated 

susceptible treatments. The list of genes driving the resistant and susceptible inoculated treatments 

were combined with the Log2 transformed data and the relative fold change for each transcript 

determined against the average expression across all replicate samples of the resistant and susceptible 

treatments. A heatmap of the relative fold change for each transcript was generated using Morpheus 

(https://software.broadinstitute.org/morpheus/). Gene Ontology enrichment analysis of the gene lists 

driving the difference between the resistant and susceptible genotypes was performed using the Plant 

Transcriptional Regulatory Map (http://plantregmap.gao-lab.org/). A threshold p-value of 0.05 was 

used to identify enriched GO terms in the categories biological process, molecular function, and 

cellular component. The top GO terms with an adjusted p-value < 1 x10E-1 were visualised using 

gprofiler in R v4.0.0 (R Core Team, 2020). 

4.2.6 Identification of genes and pathways driving differences between hypersensitive, resistant and 

susceptible E. grandis genotypes in the absence of pathogen challenge: A Partial Least Squares-

Discriminant Analysis (PLS-DA) of the Log2 transformed RNA-seq data belonging to hypersensitive, 

resistant and susceptible E. grandis control was performed using the mixomics package in R (Rohart et 

al., 2017). We noted that X-variate 1 separated the data of the resistant and hypersensitive from the 

susceptible and thus used the coordinates from x-variate 1 of the PLS-DA were used to identify genes 

differentiating the combined group of resistant and hypersensitive from the susceptible. A cut-off of 

0.093 was used to obtain the top list of genes differentiating the resistant and hypersensitive group 

from the susceptible group. Those with a value higher that 0.093 were those with increased abundance 

in the susceptible control and those lower than -0.093 were those with increased abundance in the 

resistant and hypersensitive controls. We then noted that X-variate 2 separated the data of the 

resistant control from that of the hypersensitive control and used the coordinates from x-variate 2of 

the PLS-DA to identify genes differentiating these two groups. For the coordinates, a cut-off of 0.013 

was used to identify the top genes differentiating the resistant group from the hypersensitive group. 

Those with a value higher that 0.013 were those with increased abundance in the resistant control and 

those with a value lower than -0.013 were those with increased abundance in the hypersensitive 

control. The lists of genes driving differences for each group (i.e. resistant and hypersensitive control 

group, susceptible control, resistant control and hypersensitive control) were combined with the Log2 

transformed count data and the relative fold change for each transcript determined against the 

average expression across all replicate samples of the hypersensitive, resistant and susceptible 

controls. A heatmap of the average relative fold change for each transcript in each control genotype 

was generated using Morpheus (https://software.broadinstitute.org/morpheus/). 
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5. Achievements, Impacts and Outcomes 

5.1 Identification of A. psidii infection-specific chemicals enabling novel, sensitive screening tests 

The differences in the metabolome between Melaleuca quinquenervia phenotypes, resistant, 

hypersensitive and susceptible, were investigated during the early stages of A. psidii infection. Leaves 

were collected prior to inoculation and 24 hours, 48 hours and 5 days after inoculation. Three plants 

belonging to each phenotype (resistant, hypersensitive and susceptible) were analysed and six leaves 

from each plant analysed at each time point (total 216 leaves) for improved statistical analysis. The 

metabolome of the leaves at each time point was analysed and a total of 11,276 metabolites were 

identified.  

Table 1: The summary of pairwise permanova analysis 

Comparison Factors Degree of 

freedom 

R2 p-value 

hypersensitive_vs_resistant Phenotype 1 0.04669 0.001*** 

Time 3 0.34827 0.001*** 

Phenotype x Time 3 0.02854 0.015* 

hypersensitive_vs_sensitive Phenotype 1 0.02803 0.001*** 

Time 3 0.37494 0.001*** 

Phenotype x Time 3 0.02648 0.032* 

resistant_vs_sensitive Phenotype 1 0.05663 0.001*** 

Time 3 0.36828 0.001*** 

Phenotype x Time 3 0.03643 0.002** 

 

 The leaf metabolomes were analysed using permutational multivariate analysis of variance 

(PERMANOVA), which suggested that phenotypes of the plants, time post-inoculation and the 

interaction of these two factors are all significant factors affecting the overall leaf metabolite profiles 

(Table 1). Amongst these metabolites, we identified 2,384 that changed significantly in their 

abundance (p < 0.05; Figure 1). The abundance of 978 and 2,157 metabolites were influenced by the 

phenotype of the plants and the time after inoculation, respectively, whereas 909 metabolites were 

influenced by the interaction of both the phenotype and the time. As time appears to be the most 

influential factor, this result reveals that A. psidii-infection triggered major metabolite responses on 

M. quinquenervia leaves in all phenotypes. We further examined the temporal changes of these 

significant metabolites identified with analysis of variance (ANOVA). Through hierarchical clustering 

analysis, we found that the majority of these significant metabolites were enriched shortly after A. 

psidii-infection (24 or 48 hour after inoculation) and gradually reduced at 5 days after inoculation 

(Figure 2).  
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Figure 1: Austropuccinia psidii triggered differential metabolite responses on leaves of different 
phenotypes. This Venn diagram shows the number of metabolites that are significantly changed in 
terms of abundance under the influence of phenotype, time post-inoculation and the interaction of 
both phenotype and time. Two-way ANOVA with multiple-comparison adjustment using the false 

discovery rate approach was performed to identify the significant metabolites (adjusted-p < 0.05) 

influenced by each factor and their interaction. 

 

Figure 2: Most metabolites are significantly enriched in the 24 to 48 hours after A. psidii inoculation. 
The heatmap shows the scaled peak intensity of the top-500 significant metabolites (ranked by 
adjusted p calculated with 2-way ANOVA). The heatmap is clustered by Euclidean distance and 
clustered with Ward’s minimum variance method for both the columns and rows. Purple and green 
indicate the enrichment and reduction, respectively, of each significant molecular feature (rows) of 
each sample (columns). 
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5.2 Identification of fast-evolving proteins in A. psidii for use in future population and evolutionary 

studies 

Small secreted proteins (‘effectors’) are used by pathogens to overcome plant immunity to cause 

disease.  As effectors are fast-evolving proteins, and typically genus- or species- specific, they could be 

used as novel targets to identify if a particular disease is present in a plant tissue or in a given 

environment.  To determine if expression of genes encoding effector proteins could be used as an early 

detection platform, we performed RNA-sequencing on the myrtle rust pathogen A. psidii during 

infection of resistant and susceptible E. grandis genotypes at 48 hours after inoculation (hai) looking 

for these small, secreted proteins. Principal component analysis (PCA) of RNA-sequencing samples 

revealed that 42% of the variation was explained by PC1 separating the samples by treatment of 

resistant and susceptible (Figure 3A). We were able to detect the expression of four SSP effectors in 

the tissue of E. grandis resistant and susceptible genotypes at 48 hai: APSI_H017.8250, 

APSI_P004.3021, APSI_P008.16995 and APSI_P029.3884. Due to the absence of A. psidii control RNA-

sequencing data, we profiled the relative Log2 transformed expression patterns of the four detectable 

A. psidii SSP effector genes in the resistant and susceptible E. grandis tissue and identified that 

APSI_H017.8250 displayed similar relative expression in the susceptible and resistant genotypes 

(Figure 3B). Furthermore, APSI_P004.3021, APSI_P008.16995 and APSI_P029.3884 displayed high 

relative expression in the susceptible compared to within the resistant genotype suggesting that these 

may be important for host colonisation in the susceptible genotype (Figure 3B).  As we were able to 

detect these gene transcripts when A. psidii only accounted for of 1% of the RNAseq reads, this would 

indicate that using gene expression of any of these four effector proteins would be a highly sensitive, 

highly specific means of detecting this specific pathogen at a very early stage of pathogenesis. 
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Figure 3: Austropuccinia psidii small secreted protein (SSP) effectors are more highly expressed in the 
susceptible Eucalyptus grandis genotypes 48 hours after inoculation (hai). (A)  Principal component 
analysis of RNA-sequencing samples derived from A. psidii in resistant and susceptible E. grandis 
genotypes 48 hai. (B) Expression profiles of log2-transformed data of four A. psidii small secreted effector 
genes at 48 hai in E. grandis susceptible and resistant genotypes. The y-axis represents the relative fold 
change and the x-axis represents the treatments, susceptible and resistant for each SSP. The relative fold 
change is the average of the ratio of transcript abundance for a treatment relative to the average across 
all treatments. Error bars represent standard error of the mean across replicates for each treatment of 
resistant and susceptible, respectively.  
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5.3 Data on plant traits associated with disease resistance 

We further analysed metabolomics profile of resistant, hypersensitive and susceptible phenotypes of 

M. quinquenervia during A. psidii infection. Although hierarchical clustering did not clearly separate 

metabolite profiles of leaves from different phenotypes, both PERMANOVA and ANOVA results 

support that there is significant variation in the leaf metabolite profiles from M. quinquenervia of 

different resistance phenotypes. In an effort to identify the metabolites that distinguish the M. 

quinquenervia plants’ susceptibility towards A. psidii, enrichment analysis was performed on the 

metabolite responses that are significantly influenced by phenotype, irrespective of time (ANOVA 

adjusted-p < 0.05). Organoheterocyclic compounds, including terpenoids and flavonoids appeared to 

be the most enriched metabolite sets that set apart these disease resistance phenotypes (Figure 4).  

 

 

Figure 4: Organoheterocyclic compounds are the predominant group of metabolites that differ 
between different M. quinquenervia disease phenotypes. The graph shows the metabolite 
classification of the significant metabolites influenced by the phenotypes (adjusted p < 0.05, two-way 
ANOVA with FDR adjustment). The x-axis and colour of the points indicate the significant value of the 
enrichment set, whereby the size of the points indicate the enrichment ratio generated by metabolite 
enrichment analysis. 

 

Metabolites that are induced at 24 and 48 hai potentially serve an important role in the defence against 

A. psidii infection. Therefore, metabolites that differ between different phenotypes could have 

important implications on the outcome of the disease and could, therefore, be used as a biomarker 

for A. psidii diagnostics. Therefore, we further separated metabolic fingerprints of pathogen success 

by using a k-means clustering approach for each phenotype individually (Figure 5A). For each 

phenotype, we identified two clusters of inducible metabolites. We then compared their identities and 

found that the majority of these early induced metabolites are similar between different phenotypes 

(Figure 5B).  
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Figure 5: k-means clustering separates metabolites into groups with different temporal shifts in 
abundance. Metabolite responses at 24 to 48 hours after inoculation (hai) are similar between 
different phenotypes. (A) The plots show the average temporal fluctuation in abundance of 
metabolites from different k-mean clusters. The line in each plot indicates the average log(peak 
intensity) of the metabolites (y-axis) across the time-series (x-axis; number of days post-inoculation). 
The metabolites in the key clusters highlighted in red have an increased abundance at the 24 hour and 
48 hour after infection time points. (B) The Venn diagram shows the number of metabolites that are 
enriched at 24 and 48 hai (red clusters) in each phenotype. 
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Metabolite enrichment analysis was performed on 24 and 48 hai samples to establish the 
structural identity of metabolites that are unique to each phenotype. The majority of these 
inducible metabolites are terpenoids, fatty alcohols, and dipeptides (Figure 6). Nineteen 
metabolites were found to be uniquely enriched amongst the resistant plants, and the 
identities of 9 metabolites were predicted based on mass spectrometry fragmentation 
patterns (Table 2). While many of these predicted structures have unknown roles in disease 
resistance, (2R,6x)-7-Methyl-3-methylene-1,2,6,7-octanetetrol 2-glucoside (367.1960321 
m/z) is a fatty acyl glycoside and related molecules are reported to have antimicrobial 
activity, enhance disease protection, and enhance plant growth. 

 

Figure 6: Enrichment of fatty alcohols, dipeptides and triterpenoids are the major metabolite that 
distinguish between phenotypes in Melaleuca quinquinervia leaves 24 and 48 hours after 
Austropuccinia psidii inoculation. The graph shows the classification of the metabolites that are 
enriched at 24 to 48 hours after inoculation and are specific to the phenotype (the key clusters 
identified by k-means clustering). The x-axis and colour of the points indicate the significant value of 
the enrichment set, whereby the size of the points indicate the enrichment ratio generated by 
metabolite enrichment analysis. 
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Table 2: Structural prediction of the inducible metabolites that are unique to resistant plants 24 to 
48 hours after inoculation with Austropuccinia psidii 

Compound Identificat

ion score 

Description m/z Retention time 

(min) 

2.86_366.1888n 38.7 (2R,6x)-7-Methyl-3-methylene-1,2,6,7-

octanetetrol 2-glucoside 

367.1960321 2.863466667 

5.03_624.5280m/z 35.8 N-icosanoyl-15-methylhexadecasphing-4-

enine 

624.5280082 5.0305 

6.18_791.4806m/z 37.4 1-oleoyl-2-[(3E)-hexadecenoyl]-sn-glycero-3-

phosphoglycerol 

791.4805652 6.1779 

7.13_593.2426m/z 33.5 zafirlukast 593.2425551 7.125733333 

7.13_593.3270m/z 35.8 amitriptyline 593.3269639 7.125733333 

7.16_636.5160m/z 38.4 methyl 3-hydroxypalmitate 636.5160247 7.16145 

7.30_656.2849n 37.7 coproporphyrinogen III(4-) 657.2921888 7.297133333 

7.57_623.3873m/z 32.4 lutein 5,6-epoxide 623.3873252 7.567783333 

7.85_609.8435m/z 23.8 cis-3-(2,2-dibromovinyl)-2,2-

dimethylcyclopropanecarboxylic acid 

609.8434753 7.85275 

 

 

As a complement to the work in M. quinquenervia we analysed RNA-sequencing of resistant and 

susceptible E. grandis genotypes during challenge with A. psidii.  Similar to the metabolomic work, we 

used the E. grandis system also at 48 hours post leaf inoculation versus mock-inoculated leaves to 

identify plant traits associated with disease resistance at the early stage of plant-pathogen interaction. 

We also included a hypersensitive E. grandis genotype that was mock-inoculated with spore carrier 

suspension for comparative analysis with resistant and susceptible control plantlets with the aim of 

identifying genotypic differences before pathogen challenge that may be driving differences in 

resistance. PCA of RNA-sequencing data revealed that 43% of the variation was explained in PC1 

separating the samples into control and A. psidii inoculated for the resistant and susceptible E. grandis 

genotypes (Figure 7A). PC1 also explained the largest variation for RNA-sequencing data differentiating 

the control hypersensitive and control resistant genotypes from the control susceptible genotype, and 

the inoculated resistant from the inoculated susceptible (Figure 7A). We then performed differential 

expression analysis between resistant and susceptible E. grandis during A. psidii challenge at 48 hai 

relative to the mock-inoculation to identify the number of significantly up-regulated and down-

regulated gene set. In the resistant genotype inoculation with the pathogen led to the transcription of 

1,766 genes being induced, and 2,503 genes being repressed whereas lower differential regulation was 

observed in the susceptible lines of E. grandis with 785 genes up-regulated and 524 genes down-
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regulated (Figure 7B).  Therefore, susceptible A. psidii hosts are less transcriptomically responsive to 

the presence of the pathogen. 

 
  

Figure 7: Genome-wide evaluation of RNA-sequencing data in resistant, susceptible, and 
hypersensitive Eucalyptus grandis genotypes infected with Austropuccinia psidii 48 hours after 
inoculation (hai). (A)  Principal component analysis of RNA-sequencing samples derived from control 
(Cont) and inoculated (Inoc) resistant (R), susceptible (S) and hypersensitive Eucalyptus grandis 
genotypes inoculated with A. psidii at 48 hai. (B) Significantly differentially expressed genes between 
inoculated and control resistant and susceptible Eucalyptus grandis genotypes (-1 < Log2FC > 1; p-
value 0.05).  
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We then sought to compare only the transcriptomic response of resistant and susceptible E. grandis 

genotypes inoculated with A. psidii to identify genes and pathways associated with disease resistance 

during early pathogen challenge. PCA of RNA-sequencing samples revealed that 51% of the variation 

was explained by PC1 separating the samples into resistant and susceptible at 48 hours post A. psidii 

inoculation (Figure 8A). From the PCA loadings, we identified 158 genes in the resistant genotype and 

142 genes in the susceptible genotype that were driving difference between the two during A. psidii 

challenge (Figure 8B). Expression profiling of the resistance gene drivers revealed that of the 158 

genes, 30 genes displayed very high expression in the resistant compared to the susceptible of which 

11 genes have been previously linked to disease resistance including FH interacting protein 1 

(Eucgr.C01931.1), 20S proteosome beta subunit G1 (Eucgr.H02300.1) , cysteine-rich receptor-like 

kinase (Eucgr.E03311.1), receptor-like protein (Eucgr.F00315.1), ankyrin-repeat family protein 

(Eucgr.C01885.1), terpene synthase (Eucgr.E03311.1) and histone deacetylase 5 (Eucgr.L02064.1; 

Figure 4A-i). Furthermore, 77 genes displayed a 2-3-fold higher expression in the resistant compared 

to the susceptible of which 16 have been previously linked to disease resistance including disease 

resistance proteins, cysteine-rich receptor-like kinase, Leucine-rich repeat (LRR) protein kinase and 

nitrate transporter 2.5 (Figure 9A-ii). Finally, 51 genes displayed similar expression patterns in the 

resistant and susceptible with these genes displaying marginally higher expression in the resistant and 

of these genes, 20 are linked to disease resistance functions (Figure 9A-iii). Profiling the expression of 

the 142 susceptible gene drivers revealed 9 genes that displayed very high expression in the 

susceptible compared to the resistant and of these, 3 genes were linked to disease resistance including 

one LRR protein kinase (Eucgr.G01270.1) and two NB_ARC domain containing disease resistance 

proteins (Eucgr.F01653.1 and Eucgr.J02621.1; Figure 9B-i). Interestingly, a Trimeric LpxA-like enzyme 

(Eucgr.L03047.1) displayed opposite expression being lowly expressed in the susceptible and highly 

expressed in the resistant (Figure 9B-ii). In addition, 68 genes displayed 2-3-fold higher expression in 

the susceptible compared to the resistant and of these 10 genes have been linked to disease resistance 

such as disease resistance proteins, pathogenesis-related 1 protein and heat shock protein II (Figure 

9B-iii). Finally, 64 genes displayed similar or marginally higher expression in the susceptible E. grandis 

genotype compared to the resistant genotype (Figure 9B-iv). Of these, 16 were linked to disease 

resistance functions.   
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Figure 8: Identification of genes driving differences in resistant and susceptible Eucalyptus grandis 
genotypes 48 hours after inoculation (hai) with Austropuccinia psidii (A) Principal component 
analysis (PCA) of RNA-sequencing samples derived from inoculated resistant and susceptible 
Eucalyptus grandis genotypes inoculated with A. psidii at 48 hai. (B) The loadings of the genes 
identified from the PCA analysis. Green points are genes with the highest radius among all genes and 
are the most important in driving the separation between the resistant and susceptible. The remaining 
genes (blue) are the least important in driving the separation. 
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Figure 9: Expression patterns of genes driving differences between susceptible and resistant 
Eucalyptus grandis genotypes inoculated with Austropuccinia psidii at 48 hours after inoculation 
(hai). (A) Hierarchical clustering of the log2-transformed data of 158 genes driving the resistant E. 
grandis genotype during A. psidii challenge at 48 hai compared to the susceptible E. grandis genotype. 
All the data points shown are the ratio of transcript abundance in each treatment relative to the 
average across all treatments where up-regulated genes are presented as blue (low) and down-
regulated genes are presented as red (high), respectively. The heatmap is annotated on the right-hand 
side with hierarchical clustering groups denoted i-iii.. i: susceptible genes displaying very high 
expression in the resistant compared to the susceptible; ii: genes displaying 2-3-fold higher expression 
in the resistant compared to susceptible; iii: genes displaying similar expression patterns between 
resistant and. (B) Hierarchical clustering of the log2-transformed data of 142 genes driving the 
susceptible E. grandis genotype during A. psidii challenge at 48 hai compared to the resistant E. grandis 
genotype. All the data points shown are the ratio of transcript abundance in each treatment relative 
to the average across all treatments where up-regulated genes are presented as red (high) and down-
regulated genes are presented as blue (low), respectively. i: genes displaying very high expression in 
the susceptible compared to the resistant; ii: genes displaying very high expression in the resistant 
compared to the susceptible; iii: genes displaying 2-3-fold higher expression in the susceptible; iv: 
genes displaying similar expression patterns between resistant and susceptible. RLK: Receptor-like 
protein kinase, DRP: Disease resistance protein, LRR: Leucine-rich repeat. 

 

Gene Ontology (GO) enrichment of the resistance gene drivers revealed that of the 158 genes, 127 had 

a GO annotation and of these 54 were enriched (p-value < 0.05). Of the enriched GO terms within the 

category biological process (BP), protein phosphorylation, secondary metabolic process, 

phenylpropanoid metabolic process and response to gibberellin were among the pathways observed 

that have been previously linked to plant disease resistance (Figure 10). Within the gene ontology 

category cellular compartment (CC), extracellular region, apoplast and proteosome core complex were 

among the enriched terms (Figure 10). The category molecular function (MF) contained the largest 

number of enriched terms among the gene ontology categories of which catalytic activity, small 
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molecule binding, ATP binding, oxidoreductase activity, transferase activity, protein serine/threonine 

kinase activity and aminoacyl-tRNA ligase activity were examples of the enriched terms in this category 

(Figure 10). GO enrichment of the 142 susceptible gene drivers revealed that 108 genes had GO 

annotations of which 39 were enriched at (p-value < 0.05). Of the terms enriched in the GO category 

BP, response to stress, defence response, systemic acquired resistance and hydrogen peroxide 

catabolic process were among the processes that have been reported for plant disease resistance 

(Figure 11). Within the GO category CC, the major compartments that were enriched included the 

extracellular region and cytosol of ribosome (Figure 11). For the MF category, enriched terms included 

for example ADP binding, lipid binding, oxidoreductase activity and carboxy-lyase activity (Figure 11). 

 
 
Figure 10: Disease resistance pathways are enriched in the resistant E. grandis genotype at 2 days 
after A. psidii challenge. Enriched Gene Ontology terms in the categories biological process (BP), 
cellular compartment (CC) and molecular function (MF) for the 158 genes identified as drivers of the 
resistance genotype during early pathogen challenge at 48 hours after inoculation (hai). The GO terms 
are shown on the y-axes with interesting terms bolded. The number of genes associated with each GO 
term are shown on the x-axes. The Fisher’s exact test adjusted p-value statistic for each GO term is 
shown based on a blue-yellow gradient (adjusted p-value < 1.00).  
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Figure 11: Disease resistance pathways are enriched in the susceptible E. grandis genotype at 2 days 
after A. psidii challenge. Enriched Gene Ontology terms in the categories biological process (BP), 
cellular compartment (CC) and molecular function (MF) for the 142 genes identified as drivers of the 
susceptible genotype during early pathogen challenge at 48 hours after inoculation (hai). The GO 
terms are shown on the y-axes with interesting terms bolded. The number of genes associated with 
each GO term are shown on the x-axes. The Fisher’s exact test adjusted p-value statistic for each GO 
term is shown based on a blue-yellow gradient (adjusted p-value < 1.00).  
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5.4 Scoping of new resistance pathways and control options for future research 

We then focused our efforts on the transcriptomes of mock-inoculated hypersensitive, resistant, and 

susceptible E. grandis genotypes to determine if there were genotypic differences that may be 

promoting resistance prior to challenge with the myrtle rust pathogen A. psidii. If we can identify 

baseline genetics that are responsible for pre-adapted immunity, this could be used in future to screen 

for germplasm that is likely to survive myrtle rust challenge.   

Partial Least Squares-Discriminant Analysis (PLS-DA) revealed that 43% of the variation between RNA-

sequencing sample types was explained by X-variate 1 separating the samples of the susceptible 

genotype from those of the resistant and hypersensitive (Figure 12A). X-variate 2 explained 12% of the 

variation separating the samples of the hypersensitive genotype from the resistant genotype and the 

susceptible genotype (Figure 12A). We then focused on the loadings from X-variate 1 to identify the 

genes that most differentiated the susceptible genotype from the combined grouping of the 

hypersensitive and resistant genotype. From the loadings we identified 695 genes for the combined 

hypersensitive and resistant group and 924 genes for the susceptible genotype that were driving the 

difference between the two groups in the absence of the pathogen (loadings of X-variate 1 cut-off: +/- 

0.093, Figure 12B)). To identify the genes differentiating the hypersensitive genotype from the 

resistant genotype, we focused on the loadings from X-variate 2 of the PLS-DA. We identified 569 genes 

for the hypersensitive genotype and 372 genes for the resistant genotype that were most 

differentiating the two (loadings of X-variate 2 cut-off: +/- 0.03, Figure 12C).  

Expression profiling of the log2 transformed data from the combined group of the hypersensitive and 

resistant genotypes revealed that of the 695 genes, 128 genes that displayed high expression in the 

resistant and hypersensitive group compared to the susceptible group, 15 were linked to disease 

resistance including disease resistance protein, glycosyl hydrolase, protein kinases and terpene 

synthases (Figure 13A-i). Furthermore, 215 genes displayed a 1.5-3-fold higher expression in the 

hypersensitive group compared to the susceptible group, of which 32 were linked to disease resistance 

such as TIR-NBS-LRR class disease resistance protein (Eucgr.E03556.1), LRR protein kinase 

(Eucgr.J02919.1), terpene synthase-like (Eucgr.K00827.1) and glycoside hydrolase (Eucgr.D01668.1; 

Figure 13A-ii). Finally, 352 genes displayed similar expression patterns between the hypersensitive, 

resistant, and susceptible genotypes with only marginally higher expression in the combined resistant 

and hypersensitive group compared to the susceptible group and of these 24 genes were identified 

with functions linked to disease resistance including protein kinases (Figure 13A-iii). Of the 924 

susceptible gene drivers, 182 genes displayed high expression in the susceptible compared to the 

resistant and hypersensitive genotypes of which 16 were linked to disease resistance such as basic 

chitinase (Eucgr.I02267.1), pathogenesis-related protein 4 (Eucgr.L03258.1) and a mitogen activated 

protein kinase kinas kinase (Eucgr.A01110.1; Figure 13B-i). Two genes, a plant invertase 

(Eucgr.E01454.1) and ABC-2 type transporter (Eucgr.G02776.1) displayed very high expression in the 

susceptible compared to the resistant and hypersensitive suggesting a potential role in promoting 

susceptibility (Figure 13B-ii). Moreover, 137 genes were identified that displayed a 1.5-2-fold higher 

expression in the susceptible compared to the resistant and hypersensitive genotypes of which 11 

displayed disease resistance functions including cysteine-rich receptor like protein kinase (RLK), 

disease resistance protein and wound-response protein (Figure 13B-ii). Lastly, 605 genes displayed 

similar expression between the hypersensitive and resistant group versus the susceptible genotype 

with slightly higher expression in the susceptible genotype and of these 29 were linked to disease 
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resistance mechanisms with some examples including LRR-kinase, mitogen-activated protein kinase 

(MAPK), glycoside hydrolase, enhanced disease resistance protein and heat shock protein (Figure 13B-

iii). 

 
Figure 12: Identification of genes driving differences in hypersensitive, resistant and susceptible 
Eucalyptus grandis genotypes in the absence of Austropuccinia psidii challenge (A) Partial Least 
Squares-Discriminant Analysis (PLS-DA) of RNA-sequencing samples derived from hypersensitive, 
resistant and susceptible Eucalyptus grandis plants in the absence of A. psidii challenge. (B) Loadings 
of  genes driving separation of the combined resistant and hypersensitive genotypes, and the 
susceptible genotype. The red shaded areas show the genes driving the separation between the 
combined resistant and hypersensitive genotypes, and susceptible genotype at a cut-off of +/- 0.093 
on X-variate 1, respectively. (C) Loadings of genes driving separation of the resistant and 
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hypersensitive genotypes. The green shaded areas show the genes driving the separation between the 
resistant and hypersensitive genotypes at a cut-off of +/- 0.013 on X-variate 2, respectively.  

Of the 569 genes differentiating the hypersensitive genotype, 149 were highly expressed in the 

hypersensitive genotype compared to the resistant and the susceptible genotypes (Figure 13C-i). Of 

these, a Terpene synthase (Eucgr.E03610.1), LRR kinase (Eucgr.I00392.1) and Eucgr.F00487.1 with 

unknown function displayed the highest relative expression in the hypersensitive genotype compared 

to the susceptible and resistant genotypes. Furthermore, a total of 49 genes were annotated with 

disease resistance functions. In addition, 10 displayed opposite relative expression, being very lowly 

expressed in the hypersensitive while highly expressed in the resistant and susceptible and of these 

three genes have prescribed disease resistance functions including terpene synthase (Eucgr.L02082.1), 

LRR kinase (Eucgr.I00453.1) and Pathogenesis-Related 1 (Eucgr.L01705.1; Figure 13C-ii). In addition, a 

Basic-leucine zipper transcription factor (Eucgr.J02482.1)and UDP-glucosyl transferase 

(Eucgr.L01660.1) were identified as the most lowly expressed genes in the hypersensitive relative to 

the resistant and susceptible (Figure 13C-ii). Furthermore, 229 genes displayed 1-3-fold higher 

expression in the hypersensitive genotype compared to the resistant whereas the majority of these 

genes were similarly expressed in the susceptible genotype and of these 52 were prescribed resistance 

functions including disease resistance proteins, cysteine-rich RLKs and LRR kinase proteins (Figure 13C-

iii). Finally, 181 genes displayed similar expression patterns between the hypersensitive, resistant, and 

susceptible genotypes and within this set, 17 were linked to disease resistance such as disease 

resistance proteins, cysteine-rich RLKs and ethylene forming enzyme (Figure 13C-iv). Within the 371 

genes most differentiating the resistant genotype from the hypersensitive genotype, 60 were most 

abundant in the resistant and nine have prescribed disease resistance functions including disease 

resistance protein, glutathione-S-transferase and RLK (Figure 13D-i). Of these, a disease resistance 

protein (Eucgr.H03831.1), cysteine-rich RLK (Eucgr.E03041.1), cytochrome P450 (Eucgr.D00205.1) and 

Eucgr.E03377.1 of unknown function that displayed the highest relative expression in the resistant 

compared to the hypersensitive and susceptible genotypes (Figure 13D-i). We also identified a gene, 

Crinkly related 4 (Eucgr.H00418.1) that was down-regulated in the resistant relative to the 

hypersensitive and susceptible genotypes (Figure 13D-ii). In addition, 72 genes displayed marginally 

higher relative expression in the resistant compared to the hypersensitive and susceptible (Figure 8D-

iii). Lastly, 239 genes displayed similar expression patterns between the resistant, hypersensitive, and 

susceptible (Figure 13D-iv). 
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Figure 13: Expression patterns of genes driving differences between Austropuccinia psidii 
hypersensitive, resistant and susceptible E. grandis genotypes in the absence of the pathogen. (A and 
B) Hierarchical clustering of Log2-transformed data of 695 and 924 genes driving the combined group of 
the resistant and hypersensitive genotypes and susceptible genotype, respectively based on X-variate 1 
of PLS-DA separating these two groups. All the data points shown are the ratio of transcript abundance in 
each treatment relative to the average across all treatments for each heatmap, respectively, where up-
regulated genes are presented as green (low) and down-regulated genes are presented as orange (high), 
respectively. The heatmaps are annotated on the right-hand side with hierarchical clustering groups 
denoted i-iii where i: genes displaying very high expression in the resistant and hypersensitive combined 
group compared to the susceptible (A) and vice versa (B); ii: genes displaying 2-3-fold higher expression 
in the resistant and hypersensitive combined group compared to susceptible (A) and vice versa (B); iii: 
genes displaying similar expression patterns between resistant, hypersensitive and susceptible in A and 
B, respectively. (C and D) Hierarchical clustering of Log2-transformed data of 569 and 372 genes driving 
the hypersensitive  and resistant, respectively based on X-variate 2 of PLS-DA separating these two groups. 
All the data points shown are the ratio of transcript abundance in each treatment relative to the average 
across all treatments for each heatmap, respectively, where up-regulated genes are presented as purple 
(low) and down-regulated genes are presented as green (high), respectively.  
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Outcomes: 

The data generated has contributed towards the Myrtle Rust Action plan. We discovered a subset of 

chemical and genetic fingerprints that can be used for screening for the early stages of infection by A. 

psidii. We report that both metabolomic and transcriptomic techniques are applicable in 

identifying plant phenotypes and that they could be used to informing breeding strategies (Action 

4.3.1). 

Both metabolomics and transcriptomics has identified a number of resistance pathways that should 

be targets for new areas of research. Additionally, pathways associated with the susceptible 

phenotype have been identified and should be the target of research for novel control methods 

(Actions 4.3.3; 4.3.5). 

We have identified four small secreted proteins expressed by A. psidii that are essential to early 

infection, three of which are highly expressed within the susceptible phenotype. These genes should 

be particularly monitored for changes in Australian populations of A. psidii (Action 5.3.1). Evolution 

of these proteins over time could impact early plant recognition of the parasite by resistant 

germplasm. 

Reporting: 

•   Dissemination of activities using social media: Twitter feeds have been used to disseminate 

information about myrtle rust. At the stage of publication of our research data, we will further 

disseminate findings of our research, with reference to APBSF. 

•   Engagement early career researchers through integration of research with special undergraduate 

student labs in the ‘Plant Health and Biosecurity’ unit at Western Sydney University: Laboratory 

research was cancelled throughout the year due to the SARS-CoV2 pandemic. Despite this, 

undergraduate student Fatima Karagully was provided with an online project to write a literature 

review on the impact of myrtle rust. This was also disseminated to other undergraduate students via 

two video presentations on the topic. 

We also employed two casual early career researchers for the processing of samples and data analysis 

performed for this study. Dr Johanna Wong performed A. psidii infections, in collaboration with Dr Peri 

Tobias at the University of Sydney, phenotype scoring, metabolomic sample processing and data 

analysis. Dr Wong completed her PhD in 2020 and is now employed full time at the Department of 

Primary Industries. Mr Donovin Coles performed data analysis of the transcriptome of E. grandis. He 

is due to complete his PhD in 2021 at Western Sydney University. 

•   Contribution to Masterclasses on plant health: This event was cancelled due to the SARS-CoV2 

pandemic, however we will be contributing to the 2021 event with a presentation. 

•  Publication of results in high impact journals: We are preparing two manuscripts based on the 

research presented above for publication in high impact journals. The first manuscript will describe the 

transcriptomic analysis of early A. psidii infection in susceptible vs. resistant E. grandis phenotypes. 
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The second manuscript will describe the metabolomics analysis of early A. psidii infection in susceptible 

vs. resistant M. quinquenervia phenotypes. Both manuscripts will be published in the preprint server 

BioRxiv or similar to ensure rapid dissemination of the results to the myrtle rust community and 

beyond. 

•  Presentation of results at the ASM conference 2020: The ASM conference in 2020 was cancelled 

due to the SARS-CoV2 pandemic. A presentation was given at the Western Sydney University School 

of Science research seminars which was advertised on twitter in order to reach a larger audience. We 

also hope to present our results to the Myrtle Rust Action Plan Symposium and will continue to look 

for opportunities to present this and future myrtle rust research to a wider audience in 2021 and 

beyond. 

 

6. Discussion and Conclusion 

This transcriptomics and metabolomics study identified unique chemical and genetic cues that appear 

during the early interaction between A. psidii and a host plant.  Further, a sub-set of these chemical 

and genetic signatures appear to predict if the outcome of this interaction will be resistant, 

hypersensitive, or susceptible, before any visible signs of infection.   

Our project employed untargeted metabolomics, which enabled us to identify global changes to a 

broad spectrum of known and unknown metabolites. Our results show that in M. quinquenervia, A. 

psidii had a significant influence on the metabolome at 24 to 48 hai, with the plant metabolic response 

decreasing by 5 days after inoculation. This result is consistent with other transcriptomic studies, which 

have indicated that plant response is greatest at 24 hai. A subset of metabolites were identified that 

are influenced by phenotype, including the organoheterocyclic compounds terpenoids and flavonoids. 

Further analyses will be performed to identify metabolites specific to resistant, hypersensitive and 

susceptible phenotypes. During the early time points (24 to 48 hai), 19 metabolites could be identified 

that are enriched in the resistant phenotype, including a molecule with a predicted structure known 

to enhance disease protection (Grellet Bournonville et al., 2020). This is the first reported untargeted 

metabolomics study of A. psidii infection in an Australian Myrtaceaeous species. A major advantage of 

metabolomics compared with transcriptomics is that some pathways may be additionally regulated at 

either the transcriptional or post-transcriptional level. Currently, the computational tools used to 

predict structures of metabolites based on mass spectrometry profile are still under development and 

there are limited studies of metabolomics during rust infection of any plant. As a result, many of the 

metabolite structures that were identified in this study cannot be predicted and further work is 

required to understand the molecular mechanisms associated with resistance provided by these 

metabolites. 

We subsequently performed RNA-sequencing on the myrtle rust pathogen A. psidii during infection of 

resistant and susceptible E. grandis genotypes at 48 hours after inoculation. Transcripts encoding for 

three A. psidii small secreted proteins were highly expressed in the susceptible compared to the 

resistant host genotypes. These can be used as markers to distinguish between resistant and 

susceptible at early stage of infection with very high sensitivity and species-specific accuracy. Analysis 

of the E. grandis transcripts 48 hours after A. psidii challenge, identified that 11 genes can be used as 
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markers for resistance, while 9 genes can be used as markers of susceptibility. Here we also identified 

that E. grandis displays genotypic differences prior to A. psidii challenge that may promote resistance 

of this species to infection by A. psidii. We identified 32 genes that are markers for resistance (resistant 

and hypersensitive) vs susceptible, while 16 genes were identified as markers for susceptibility. 

Previous studies have investigated the transcriptomics of M. quinquenervia and other Australian 

Myrtaceae in response to A. psidii (Hsieh et al., 2018; S. A. Santos et al., 2020; Tobias et al., 2018). 

These studies have also investigated the differences between resistant and susceptible plants at the 

gene expression level. Hsieh et al. (2018) were unable to find any consistent resistance gene expression 

in M. quinquenervia plants with resistance to A. psidii. It was suggested that this may be due to more 

than one stress response being involved in resistance to infection (Hsieh et al., 2018).  

 
 

7. Recommendations 

Our results support the aim of this study, that a curated set of both chemical and genetic cues can be 

used to for novel, sensitive screening tests. Based on the four main objectives of this project, we 

provide the following recommendations: 

1.        Identification of A. psidii-specific chemicals enabling novel, sensitive screening tests 

The results of this study have identified a curated set of metabolites that can be used to detect the 

early stages of A. psidii before infection is visible.  

Recommendations:  

 Metabolic fingerprinting can be developed as a sensitive method for detecting A. 

psidii infection in the first 48 hours, regardless of the resulting phenotype.  

 Metabolic fingerprinting is not recommended for mid- to late-stage A. psidii 

infection 

 Additional experimentation is required to streamline a defined metabolic 

fingerprint, which can be used for other Myrtaceaeous species. 

2.     Identification of fast-evolving proteins in A. psidii for use in future population and 

evolutionary studies 

Small secreted protein (SSP) gene expression by A. psidii has been detected and can be considered 

a highly sensitive and specific way of detecting the presence of the pathogen. Relative expression 

of the SSP genes is different in resistant and susceptible hosts.  

Recommendations:  

 Screening tools for detection of early infection could be developed based on the 

SSP genes detected in this study.  

 Differential expression of these SSP genes in resistant and susceptible hosts across 

a larger range of Myrtaceaeous species should be tested to confirm that this pattern 

of expression is consistent. 

3.        Data on plant traits associated with disease resistance 

Metabolomics and transcriptomics were effective in identifying a set of metabolites and transcripts 

that were specific to the resistant and susceptible phenotypes of Melaleuca quinquenervia and 

Eucalyptus grandis, respectively. 

 Recommendations: 

https://paperpile.com/c/sOIWSq/FI0o+nJTH+yPmD
https://paperpile.com/c/sOIWSq/nJTH
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 Confirmation of phenotype-specific metabolic fingerprints is required across a 

range of Myrtaceaeous species to determine its applicability to screening for plant 

breeding purposes. 

 Isolation and structural characterisation of metabolites associated with resistance 

during early infection to better understand their role in the resistance mechanism. 

 Screening for orthologues of the resistance and susceptible genes in new model 

systems to see if they are broadly applicable biomarkers of phenotype.  

 Use a refined gene list generated in the previous point to then investigate the 

mechanism of these genes contributing to disease resistance for future germplasm 

screening. 

4.        Scoping of new resistance pathways and control options for future research 

A set of resistance genes were identified to be upregulated in Eucalyptus grandis prior to A. psidii 

inoculation that can differentiate between resistant, hypersensitive and susceptible phenotypes.  

  Recommendations: 

 Develop a panel of markers that are linked to phenotype, by testing a wider range of 

Myrtaceae species. This could be developed using the ThermoFisher AgriSeq™ HTS 

Library Kit as a basis. 
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